Peer-reviewed articles

2019

36. Preparation of isocyanate microcapsules as functional crosslinking agent by minimalist interfacial polymerization

Ma, Y.; Lu, P.; Chen, W.; Zhang, Y. and Gu, J.

Advanced Powder Technology, 2019, 10, 1995-2002.

35. Crystal-to-crystal transition and the structure development of electrospun poly(ethylene 2,6 naphthalate) (PEN) nanofibers from solution

Yaman, M.; Lu, P. and Vasanthan, N.

The Journal of Physical Chemistry B, 2019, 27, 5954-5961.

34. Lightweight, flexible, thermally-stable, and thermally-insulating aerogels derived from cotton nanofibrillated cellulose

Qi, J.; Xie, Y.; Liang, H.; Wang, Y.; Ge, T.; Song, Y.; Wang, M.; Li, Q.; Yu, H.; Fan, Z.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Lu, P.* and Chen, W.

ACS Sustainable Chemistry & Engineering, 2019, 10, 9202-9210.

2018

33. The physical chemistry and materials science behind sinter-resistant catalysts

Dai, Y.; Lu, P.; Cao, Z.; Campbell, C. T. and Xia, Y.

Chemical Society Reviews, 2018, 12, 4314-4331.

32. Robust nanofibrillated cellulose hydro/aerogels from benign solution/solvent exchange treatment

Fan, J.; Ifuku, S.; Wang, M.; Uetani, K.; Liang, H.; Yu, H.; Song, Y.; Li, X.; Qi, J.; Zheng, Y.; Wang, H.; Shen, J.; Zhang, X.; Li, Q.; Liu, S.; Liu, Y.; Wang, Q.; Li, J.; Lu, P.*; Fan, Z. and Chen, W.

ACS Sustainable Chemistry & Engineering, 2018, 5, 6624-6634.

31. Thermally triggered nanocapillary encapsulation of lauric acid in polystyrene hollow fibers for efficient thermal energy storage

Lu, P.*; Chen, W.; Fan, J.; Ghaban, R. and Zhu, M.

ACS Sustainable Chemistry & Engineering, 2018, 6, 2656-2666.

2017

29. Embedding lauric acid into polystyrene nanofibers to make high-capacity membranes for efficient thermal energy storage

Lu, P.*; Chen, W.; Zhu, M. and Murray, S.

ACS Sustainable Chemistry & Engineering, 2017, 5, 7249–7259

28. A photochemical, room-temperature, and aqueous route to the synthesis of Pd nanocubes enriched with atomic steps and terraces on the side faces

Vara, M.; Lu, P.; Yang, X.; Lee, C.-T. and Xia, Y.

Chemistry of Materials, 2017, 10, 4563-4571.

27. Multifunctional bionanocomposite foams with a chitosan matrix reinforced by nanofibrillated cellulose

Wang, Y.; Uetani, K.; Liu, S.; Zhang, X.; Wang, Y.; Lu, P.; Wei, T.; Fan, Z.; Shen, J.; Yu, H.; Li, S.; Zhang, Q.; Li, Q.; Fan, J.; Yang, N.; Wang, Q.; Liu, Y.; Cao, J.; Li, J. and Chen, W.

ChemNanoMat, 2017, 2, 98-108 .

2016

26. Sustainable carbon aerogels derived from nanofibrillated cellulose as high-performance absorption materials

Chen, W.; Zhang, Q.; Uetani, K.; Li, Q.; Lu, P.; Cao, J.; Wang, Q.; Liu, Y.; Li, J.; Quan, Z.; Zhang, Y.; Wang, S.; Meng, Z. and Yu, H.

Advanced Materials Interfaces, 2016, 10, 1600004 .

2015

25. Photochemical deposition of highly dispersed Pt nanoparticles on porous CeO2 nanofibers for the water-gas shift reaction

Lu, P.; Qiao, B.; Lu, N.; Hyun, D. C.; Wang, J.; Kim, M. J.; Liu, J. and Xia, Y.

Advanced Functional Materials, 2015, 26, 4153-4162.

2014

24. Seed-mediated synthesis of gold tetrahedra in high purity and with tunable, well-controlled sizes

Zheng, Y.; Liu, W.; Lv, T.; Luo, M.; Hu, H.; Lu, P.; Choi, S.-I.; Zhang, C.; Tao, J.; Zhu, Y.; Li, Z.-Y. and Xia, Y.

Chemistry – An Asian Journal, 2014, 9, 2635-2640.

23. Site-selective sulfurization of bromide-capped palladium nanocubes by polysulfide and the underlying mechanism

Lu, P.; Lu, N.; Wang, J.; Kim, M. J. and Xia, Y.

Nanotechnology, 2014, 1, 014003/1-014003/9.

2013

22. Aqueous-phase synthesis of single-crystal Pd seeds 3 nm in diameter and their use for the growth of Pd nanocrystals with different shapes

Zhu, C.; Zeng, J.; Lu, P.; Liu, J.; Gu, Z. and Xia, Y.

Chemistry – A European Journal, 2013, 16, 5127-5133.

18. Microscale polymer bottles corked with a phase-change material for temperature-controlled release

Hyun, D. C.; Lu, P.; Choi, S.-I.; Jeong, U. and Xia, Y.

Angewandte Chemie International Edition, 2013, 40, 10468-10471.

2012

17. A highly reactive and sinter-resistant catalytic system based on platinum nanoparticles embedded in the inner surfaces of CeO2 hollow fibers

Yoon, K.; Yang, Y.; Lu, P.; Wan, D.; Peng, H.-C.; Stamm Masias, K.; Fanson, P. T.; Campbell, C. T. and Xia, Y.

Angewandte Chemie International Edition, 2012, 38, 9543-9546.

16. Preparation and characterization of cellulose nanocrystals from rice straw

Lu, P. and Hsieh, Y.-L.

Carbohydrate Polymers, 2012, 1, 564-573.

15. Cellulose isolation and core-shell nanostructures of cellulose nanocrystals from chardonnay grape skins

Lu, P. and Hsieh, Y.-L.

Carbohydrate Polymers, 2012, 4, 2546-2553.

14. Highly pure amorphous silica nano-disks from rice straw

Lu, P. and Hsieh, Y.-L.

Powder Technology, 2012, 149-155.

2011

13. Effects of polymer matrices to the formation of silicon carbide (SiC) nanoporous fibers and nanowires under carbothermal reduction

Lu, P.; Huang, Q.; Mukherjee, A. and Hsieh, Y.-L.

Journal of Materials Chemistry, 2011, 4, 1005-1012.

12. Synthesis of nickel nanoparticles supported on nanoporous silicon oxycarbide (SiCO) sheath-core fibers

Lu, P.; Huang, Q.; Mukherjee, A. and Hsieh, Y.-L.

The Journal of Physical Chemistry C, 2010, 27, 11776-11782.

2010

11. SiCO-doped carbon fibers with unique dual superhydrophilicity/superoleophilicity and ductile and capacitance properties

Lu, P.; Huang, Q.; Mukherjee, A. and Hsieh, Y.-L.

ACS Applied Materials & Interfaces, 2010, 12, 3738-3744.

10. Layer-by-layer self-assembly of cibacron blue F3GA and lipase on ultra-fine cellulose fibrous membrane

Lu, P. and Hsieh, Y.-L.

Journal of Membrane Science, 2010, 1-2, 21-27.

9. Preparation and properties of cellulose nanocrystals: Rods, spheres, and network

Lu, P. and Hsieh, Y.-L.

Carbohydrate Polymers, 2010, 2, 329-336.

8. Multiwalled carbon nanotube (MWCNT) reinforced cellulose fibers by electrospinning

Lu, P. and Hsieh, Y.-L.

ACS Applied Materials & Interfaces, 2010, 8, 2413-2420.

2009

7. Macroporous silicon oxycarbide fibers with luffa-like superhydrophobic shells

Lu, P.; Huang, Q.; Liu, B.; Bando, Y.; Hsieh, Y.-L. and Mukherjee, A. K.

Journal of the American Chemical Society, 2009, 30, 10346-10347.

6. Highly dispersive carbon nanotube/alumina composites and their electrospun nanofibers

Lu, P.; Huang, Q.; Jiang, D.; Ding, B.; Hsieh, Y.-L.; Ovid’ko, I. A. and Mukherjee, A.

Journal of the American Ceramic Society, 2009, 11, 2583-2589.

5. Lipase bound cellulose nanofibrous membrane via cibacron blue F3GA affinity ligand

Lu, P. and Hsieh, Y.-L.

Journal of Membrane Science, 2009, 1+2, 288-296.

4. Organic compatible polyacrylamide hydrogel fibers

Lu, P. and Hsieh, Y.-L.

Polymer, 2009, 15, 3670-3679.

3. Cellulose nanocrystal-filled poly(acrylic acid) nanocomposite fibrous membranes

Lu, P. and Hsieh, Y.-L.

Nanotechnology, 2009, 41, 415604/1-415604/9.

Before 2008

2. Applications of electrospun fibers

Lu, P. and Ding, B.

Recent Patents on Nanotechnology, 2008, 3, 169-182.

1. Synthesis of novel calix[4]arenes containing one and two substituents on the “upper rim”

Li, L.; Lu, P.; Xian, C. and Zheng, L.

Indian Journal of Chemistry Section B-Organic Chemistry Including Medicinal Chemistry, 2006, 9, 2118-2122.